Differentiating Arytenoid Dislocation and Recurrent Laryngeal Nerve Paralysis by Arytenoid Movement in Laryngoscopic Video

Peiyun Zhuang, Steven Nemcek, Ketan Surender, Matthew R. Hoffman, Fan Zhang, William J. Chapin and Jack J. Jiang

Otolaryngology -- Head and Neck Surgery 2013 149: 451 originally published online 29 May 2013
DOI: 10.1177/0194599813491222

The online version of this article can be found at:
http://oto.sagepub.com/content/149/3/451

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
AMERICAN ACADEMY OF
OTOLOGYNOLOGY--
HEAD AND NECK SURGERY

American Academy of Otolaryngology- Head and Neck Surgery

Additional services and information for Otolaryngology -- Head and Neck Surgery can be found at:

Email Alerts: http://oto.sagepub.com/cgi/alerts
Subscriptions: http://oto.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> Version of Record - Aug 26, 2013
OnlineFirst Version of Record - May 29, 2013

What is This?
Differentiating Arytenoid Dislocation and Recurrent Laryngeal Nerve Paralysis by Arytenoid Movement in Laryngoscopic Video

Peiyun Zhuang, MD1, Steven Nemcek2, Ketan Surender, MS2, Matthew R. Hoffman, PhD2, Fan Zhang, MD3, William J. Chapin2, and Jack J. Jiang, MD, PhD2,3

Abstract

Objective. To present a new method of quantifying arytenoid movement during inspiration and determine if it can be used to distinguish arytenoid dislocation from vocal fold paralysis.

Study Design. Case series with chart review.

Setting. Retrospective study conducted in a university laboratory based on university hospital data.

Subjects and Methods. Endoscopic videos from 8 patients with dislocation and 5 patients with vocal fold paralysis diagnosed by electromyography were included. Vector analysis measured cuneiform movement, an indirect measurement of arytenoid movement, during 1 inspiration. Measurements normalized and not normalized to vocal fold length were evaluated. Interrater reliability (2 raters) and intrarater reliability (1 rater performing the analysis twice) were evaluated using intraclass correlation coefficient (ICC) analysis. Raters were blinded to subject group during analysis.

Results. Pixel-valued cuneiform movement was 81.16 ± 25.62 for dislocation and 30.22 ± 23.60 for paralysis (P = .019). Unitless cuneiform movement was 0.58 ± 0.17 for dislocation and 0.24 ± 0.18 for paralysis (P = .030). Interrater ICC was 0.942 for pixel-valued measurements and 0.962 for unitless measurements. Intrarater ICC was 0.909 for pixel-valued measurements and 0.881 for unitless measurements.

Conclusions. Both pixel-valued and unitless measures of arytenoid movement were significantly greater in arytenoid dislocation than vocal fold paralysis. Pixel-valued measurements were included to demonstrate the ability to make quantitative comparisons across subjects without precise knowledge of camera precision, provided position is approximately stable, as each measurement is inherently normalized by vocal tract length. Future studies will apply this new method of evaluating vocal fold immobility disorders on a larger scale and incorporate a more diverse group of etiologies.

Keywords

arytenoid dislocation, vocal fold paralysis, videolaryngoscopy, endoscopy

Received January 23, 2013; revised April 26, 2013; accepted May 2, 2013.

Arytenoid dislocation refers to complete separation of the cartilaginous surfaces of the cricoarytenoid joint. In subluxation, some contact between the joint surfaces is preserved.1 While these are distinct conditions, they represent similar clinical entities.2 Arytenoid dislocation is traditionally viewed as a rare event3; however, it may be underreported due to confusion with recurrent laryngeal nerve (RLN) paralysis.4 Symptoms common to both disorders include hoarseness, aphony, and dysphagia.5 Correctly distinguishing between arytenoid dislocation and RLN paralysis is important, as the treatments differ; however, diagnosis remains a challenge.3,5-7

Currently used assessments include laryngoscopy, computed tomography, and laryngeal electromyography (LEMG), although none is ideal. EMG can be useful, but problems exist with probe placement and cost.5,8,9 Fibrillation potential and positive sharp waves can be found in laryngeal nerve injuries,10 while mechanically based vocal fold disorders generally

1Xiamen University Zhongshan Hospital, ENT Department, Xiamen, Fujian, China
2University of Wisconsin–Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology–Head and Neck Surgery, Madison, Wisconsin, USA
3Fudan University Shanghai ENT Hospital, ENT Department, Shanghai, China

Corresponding Author:
Jack J. Jiang, University of Wisconsin–Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology–Head and Neck Surgery, 1300 University Avenue, 2725 Medical Sciences Center, Madison, WI 53706, USA.
Email: jiang@surgery.wisc.edu
yield a normal LEMG evaluation. Successful differentiation of mechanical injury and paralysis has been shown using these criteria.10

A clinical sign that may be potentially useful in distinguishing the two disorders is arytenoid movement.3 The cuneiform tubercles abduct and adduct with the arytenoids.11 During inspiration, these structures move in a lateral-rotational path with respect to the anterior commissure, an easily identified landmark immobile during a single inspiration. The arytenoid and cuneiform tubercle reach a maximum distance from the glottal midline and return to their original position during a single sequence of inspiratory glottal opening. In the presence of paralysis or dislocation, movement is reduced. While movement in the presence of dislocation is noticeably less than normal, movement in the presence of RLN paralysis can be nearly eliminated because of the lack of innervation to the posterior cricoarytenoid muscle.6

Differences in movement, though, can be subtle and not easily seen on laryngoscopy. An automated, quantitative method of describing this movement may facilitate differentiation between dislocation and paralysis. We present a video-based tissue-tracking method that can be used to quantify arytenoid movement objectively.

Materials and Methods

Data Collection

This retrospective study was approved by the ethics committee at Xiamen University. Relevant medical history included recent general anesthesia and intubation. Each subject was treated in 1 of 10 hospitals, some affiliated with Xiamen University. The onset of vocal fold immobility was after surgery. Likely etiologies include intubation trauma (dislocation) or transection of the RLN (paralysis). No patients exhibited notably abnormal signals during cricothyroid electromyography, which ruled out superior laryngeal nerve paralysis.

The LEMG signals for each fold were compared with a database of normal patient signal data taken by Lizhen et al.12 RLN paralysis was defined as an increase or decrease in signal duration of more than 20%, abnormal wave patterns in the signal such as fibrillation, or an increase or decrease in the amplitude of the wave of 100% or 50%, respectively.12 Laryngeal nerve disorders correspond with increased insertional activity, leading to positive sharp waves and fibrillation potentials.13 The motor unit potential is prolonged with an increased number of phases, and the amplitude of the signal may be either increased or decreased. There is an incomplete interference pattern that decreases recruitment and rapid signaling of the remaining motor neurons.10,13,14 If no variation from normal signals existed, patients were diagnosed with dislocation of the cricoarytenoid joint. LEMG analysis of the posterior cricoarytenoid muscle was performed to rule out synkinesis as a potential explanation for LEMG data that appeared to be in the normal range. Patients with dislocation underwent closed reduction, and all had good outcomes. The procedure was conducted in a special EMG room, and data were interpreted by a physician with extensive experience in performing the procedure.

Endoscopic videos were collected at a sampling rate of 25 frames per second from 11 patients diagnosed with RLN paralysis and 15 patients diagnosed with arytenoid dislocation using the same protocol described above. The mean age of the patients with RLN paralysis was 47 years (range, 33-58 years), and the mean age of the arytenoid dislocation group was 44 years (range, 19-67 years). Each patient underwent direct laryngoscopy (Toshiba, 3CCD, model JK-TU62H G endoscope and 9200C/E video recording system). Patient information is presented in Table 1.

Data Analysis

A custom MATLAB program (The MathWorks, Inc, Natick, MA) was used to track movement over a sequence of video frames. In the first frame, the structure of interest was selected by the user. In the following frames, the location of this region was found automatically using a normalized cross-correlation matching criterion.15 This matching criterion was chosen because it is robust to lighting variation.

First, a sequence of frames that demonstrated a single inspiration sequence following phonation of /i/ was selected. The first frame in this sequence was chosen by qualitatively identifying minimum vocal fold abduction. The last frame was chosen by identifying maximum glottal opening. Sequences in which the anterior commissure was not visible during any one frame were excluded from analysis. If no acceptable frame sequence was observed, the video (and patient) was excluded from analysis. Proper landmark tracking was visually verified following the analysis of each video. Based on these criteria, 8 of 15 patients with arytenoid...
dislocation and 5 of 11 patients with RLN paralysis were included; videos that were excluded could not be used as the structures of interest were obscured at some point during the recording, precluding accurate measurement.

At the point of minimal arytenoid abduction, a region tracking algorithm was initiated at the anterior commissure and cuneiform tubercle. The positions of both were tracked automatically over the inspiration. We chose the anterior commissure because it does not move during inspiration. Movement of the cuneiform tubercle was used as a surrogate of arytenoid movement, as it is adducts and abducts with those movements of the arytenoid but is easier to visualize. The cuneiform was visible on all videos included in the analysis.

Cuneiform tubercle displacement was measured in pixels. During endoscopy, camera position can change because of patient and examiner movement. Accordingly, the difference in position of the cuneiform tubercle represents the sum of the displacement due to arytenoid movement and camera movement. To address this issue, a normalizing factor is needed. We defined a vector from the anterior commissure to the cuneiform tubercle. The difference between this vector at the point of minimum and maximum abduction in the glottal opening sequence was recorded. The difference between these vectors represents cuneiform tubercle (and arytenoid) movement independent of camera movement (Figure 1).

This relationship can be investigated theoretically using equations that relate relative and absolute distances. Pixel-valued measurements are a relative measurement of true object size or path length. This can be described mathematically according to the following relationship describing movement of an object (e.g., cuneiform tubercle) as observed across multiple frames of a recording:

$$U = f \frac{X}{Z},$$

where U is the size in pixels of the path length created by movement of an object, X is the true size of the path length in millimeters, Z is the depth in millimeters from the camera to the object, and f is a proportionality constant primarily dependent on the camera’s lens and imaging sensor. Importantly, in this study, single inspirations were evaluated, during which vertical movement of the camera or larynx would be minimal. Thus, translational movement is much greater than vertical movement.

To avoid any potentially confounding effects of camera movement, a normalizing measurement of vocal fold length can be made:

$$V = f \frac{L}{Z},$$

where V is vocal fold length in pixels, L is vocal fold length in millimeters, Z is the depth in millimeters from the camera to the object, and f is another proportionality constant.

Table 1. Summary subject descriptions.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age</th>
<th>Sex</th>
<th>Dislocation/Paralysis</th>
<th>Reason for Surgery</th>
<th>Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>47</td>
<td>Male</td>
<td>Paralysis</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
<tr>
<td>2</td>
<td>39</td>
<td>Male</td>
<td>Dislocation</td>
<td>Lung cancer</td>
<td>Left</td>
</tr>
<tr>
<td>3</td>
<td>61</td>
<td>Female</td>
<td>Paralysis</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>Male</td>
<td>Dislocation</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>Male</td>
<td>Paralysis</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>Male</td>
<td>Paralysis</td>
<td>Lung cancer</td>
<td>Left</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>Male</td>
<td>Dislocation</td>
<td>Lung cancer</td>
<td>Right</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>Male</td>
<td>Dislocation</td>
<td>Stomach cancer</td>
<td>Left</td>
</tr>
<tr>
<td>9</td>
<td>48</td>
<td>Female</td>
<td>Dislocation</td>
<td>Breast cancer</td>
<td>Left</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>Male</td>
<td>Dislocation</td>
<td>Stomach cancer</td>
<td>Right</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>Male</td>
<td>Paralysis</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>Male</td>
<td>Dislocation</td>
<td>Pancreatic cancer</td>
<td>Left</td>
</tr>
<tr>
<td>13</td>
<td>42</td>
<td>Female</td>
<td>Dislocation</td>
<td>Thyroid cancer</td>
<td>Left</td>
</tr>
</tbody>
</table>
Computing the ratio of cuneiform movement to vocal fold length provides a normalized, unitless measurement given by the ratio of U to V:

$$\frac{U}{V} = \frac{X}{L}.$$

While including a vocal fold length provides a normalized value, endoscopy includes its own inherent normalizing factor in the distance from the camera to the larynx. For subjects with a long vocal tract (and likely a large larynx and movements), the size of a movement or structure on the pixel scale will appear approximately the same as in a subject with a shorter vocal tract and smaller larynx (Figure 2). Absolute measurements in millimeters may be of interest academically, but normal size or movement relative to the subject’s larynx and vocal tract are likely sufficient for most clinical scenarios. In this study, the unitless measurement is normalized by vocal fold length, while the pixel-valued measurement is normalized according to distance from the camera to the larynx (proportional to vocal tract length). In both cases, the normalizing factor is a single anatomic measurement taken from a normally distributed population. Therefore, both measurements should exhibit similar trends in mean.

Statistical Analysis

A preliminary evaluation of intra- and interrater reliability was conducted. Two authors (S.N. and M.R.H.) performed analysis to evaluate interrater reliability using intraclass correlation coefficient (ICC) analysis for both pixel-valued and unitless measurements. One author (S.N.) performed the analysis twice to evaluate intrarater reliability using ICC analysis for both measurements. Both raters were blinded to which group (dislocation or paralysis) each video belonged.

A Mann-Whitney rank sum test with $\alpha = .05$ was performed to evaluate differences in mean arytenoid displacement during inspiration between the 2 disorders. The first analysis performed by the second author (S.N.) was determined a priori to be used for hypothesis testing and interrater reliability analysis.

Results

The mean pixel-valued movement of the cuneiform tubercle was 81.16 ± 25.62 for arytenoid dislocation and 30.22 ± 23.60 for RLN paralysis ($U = 4.000$, $T = 19.000$, $P = .019$; Figure 3). The 95% confidence interval for the difference in the means was (17.26, 78.87). Mean unitless movement of the cuneiform tubercle was 0.58 ± 0.17 for arytenoid dislocation and 0.24 ± 0.18 for RLN paralysis ($U = 5.000$, $T = 20.000$, $P = .030$; Figure 4). The 95% confidence interval for the difference in the means was (0.08, 0.53).

Interrater reliability analysis yielded an ICC of 0.942 for pixel-valued measurements and 0.962 for normalized measurements (Table 2). Intrarater reliability analysis yielded an ICC of 0.909 for pixel-valued measurements and 0.881 for unitless measurements (Table 2).

Discussion

Our results indicate significantly greater arytenoid movement in cases of arytenoid dislocation than in cases of RLN paralysis, coinciding with the qualitative observations.
of Sataloff et al. A paralyzed vocal fold with disrupted neuromuscular transmission should exhibit little or no movement, and while arytenoid dislocation will certainly compromise normal range of motion, preserved innervation could allow for some movement. The preliminary inter- and intrarater reliability analysis included in this study provides support for the clinical potential of the method. While larger-scale evaluations with more raters are warranted, the high reliability observed here demonstrates the user-friendly nature of the method and potential value of an objective, quantitative technique to distinguish between these 2 disorders.

In addition to presenting a new method of distinguishing vocal fold paralysis from arytenoid dislocation, a justification for pixel-valued quantitative measurements is provided. While absolute magnitude of movement may differ across subjects, relative magnitude of movement (ie, relative to the size of a particular subject’s larynx and vocal tract) may be of greater clinical interest. For a given image of the larynx obtained endoscopically, a larger larynx farther from the camera will appear approximately the same size as a smaller larynx that was closer to the camera (Figure 2). Thus, all endoscopically obtained images have an inherent, internal normalization factor of vocal tract length. In this study, the same trend was observed for measurements normalized and not normalized to vocal fold length, a discrete normalization factor commonly used in deriving absolute, quantitative measurements from endoscopic videos. Additional basic science studies manipulating camera distance and larynx size will be performed to explore this issue further.

Critical to evaluating this new method is comparing it against an established method to ensure our predetermined classes of dislocation or paralysis are indeed correct. For this purpose, we used LEMG, an assessment frequently employed to distinguish the two disorders on which significant literature is available. While there is potential for misdiagnosis according to LEMG, we took measures to decrease that risk. First, patients were included in the study only if they had undergone endoscopic recordings within 2 weeks after their operation during which the injury resulting in vocal fold immobility occurred. Synkinesis following RLN injury can result in an LEMG signal that appears normal; however, this typically does not occur until at least 6 to 7 weeks after injury. Second, all tracings were acquired and analyzed by physicians well versed in LEMG.

According to the descriptions of Lizhen et al, tracings exhibiting either a substantial increase or decrease in signal duration or amplitude were classified as RLN paralysis. While paralysis can result in a decreased LEMG signal, Woodson reported an increase in signal strength in cats following RLN transection due to reinnervation. This reinnervation does not necessarily restore normal muscle function. Therefore, an increase or decrease in LEMG signal more extreme than the aforementioned predefined threshold was considered reflective of paralysis. In addition, it is true that LEMG may appear fairly normal in persons with vocal fold paralysis due to synkinesis of abductor and adductor muscles. However, synkinesis does not occur until at least 6 to 7 weeks following RLN injury and may take as long as 3 to 6 months following injury. In addition to testing for synkinesis in the posterior cricoarytenoid muscle, subjects were excluded if LEMG and endoscopic video recording occurred more than 2 weeks following RLN injury. This effectively ruled out synkinesis in the subjects who were included in the study. Cricoarytenoid ankylosis may be difficult to differentiate from paralysis and requires general anesthesia to palpate the joint. The fact that immobility occurred within 2 weeks after an operation with intubation and general anesthesia provides evidence against the possibility of ankylosis as the cause of the immobility.

A limitation of this study is modest sample size. This is due to the retrospective nature of the data; when videos

Table 2. Summary of inter- and intrarater reliability.

<table>
<thead>
<tr>
<th></th>
<th>Rater 1-1</th>
<th>Rater 1-2</th>
<th>Intrarater ICC</th>
<th>Rater 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RLNP</td>
<td>Dislocation</td>
<td>RLNP</td>
<td>Dislocation</td>
</tr>
<tr>
<td>Pixels</td>
<td>30.22 ± 23.60</td>
<td>81.2 ± 25.6</td>
<td>30.38 ± 22.12</td>
<td>70.58 ± 22.79</td>
</tr>
<tr>
<td>Unitless</td>
<td>0.24 ± 0.18</td>
<td>0.58 ± 0.17</td>
<td>0.24 ± 0.17</td>
<td>0.49 ± 0.13</td>
</tr>
</tbody>
</table>

Abbreviations: I-1, first analysis performed by rater 1; I-2, second analysis performed by rater 1; ICC, intraclass correlation coefficient; RLNP, recurrent laryngeal nerve paralysis.
were recorded, no standardized procedure designed for collecting movement data had been developed. We will employ the method described here on a larger scale in future studies. An additional limitation is the use of the cuneiform to measure arytenoid movement indirectly. While it would be preferable to measure arytenoid movement directly by monitoring the vocal process, doing so was not feasible in our sample. The vocal process was often obscured and could not be tracked reliably over an entire inspiration. In the future, focused assessment for the purpose of visualizing vocal process movement during inspiration may allow for use of this structure.

This method may be useful clinically when evaluating patients with new-onset vocal fold immobility after surgery or intubation and could potentially eliminate the need for LEMG or joint palpation. Cases of severe paresis may also be able to be distinguished from dislocation; however, the reliability of this differentiation would depend on the severity of the paresis, and this issue requires further investigation. Further research needs to be performed in a larger sample with more diverse etiologies of immobility and time following presentation of immobility to determine if arytenoid movement measurements extracted from endoscopic videos could be of use in a wider variety of cases.

Conclusion

We hypothesized that subjects with arytenoid dislocation would exhibit greater arytenoid movement during inspiration than subjects with RLN paralysis. Both pixel-values (inherently normalized to vocal tract length) and unitless measurements normalized to vocal fold length were significantly different between the 2 groups. This minimally invasive method shows promise for distinguishing between these 2 entities.

Author Contributions

Peiyun Zhuang, data collection, original project idea, manuscript development, final approval; Steven Nemcek, primary project lead, manuscript author, data analysis, final approval; Ketan Surender, software design, data analysis, manuscript development, final approval; Matthew R. Hoffman, interpretation of data, drafting and critical revision, final approval, data analysis, statistical analysis; Fan Zhang, research assistance, project collaborator, idea contributor, draft editor, final approval; William J. Chapin, manuscript development and project collaborator, critical revision, final approval; Jack J. Jiang, conception and design, critical revision, final approval.

Disclosures

Competing interests: Matthew R. Hoffman, co-owner of small start-up company that was not involved in this study (Wisconsin Voice and Swallow Innovations Group).

Sponsorships: None.

Funding source: National Institutes of Health (NIH), National Natural Science Foundation of China. This study was funded by National Natural Science Foundation of China, grants 8107773 and 81028004, and NIH grants R01 DC008153 and F31 DC012495 from the National Institute on Deafness and other Communicative Disorders.