Possible Errors in Hearing Recovery Results
Po-Hsien Sung and Kai-Min Fang
Otolaryngology -- Head and Neck Surgery 2013 148: 1062
DOI: 10.1177/0194599813486089

The online version of this article can be found at:
http://oto.sagepub.com/content/148/6/1062

Published by:
http://www.sagepublications.com

On behalf of:
AMERICAN ACADEMY OF
OTOLARYNGOLOGY--
HEAD AND NECK SURGERY

American Academy of Otolaryngology- Head and Neck Surgery

Additional services and information for Otolaryngology -- Head and Neck Surgery can be found at:

Email Alerts: http://oto.sagepub.com/cgi/alerts
Subscriptions: http://oto.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

>> Version of Record - May 20, 2013
What is This?
The authors state concerns about confounding or bias. As no concern about confounding is specified, we assume these terms were used interchangeably. Following are our thoughts about the three concerns about bias the authors specify.

Indeed the use of physician-assigned ICD9 coding to measure sensorineural hearing loss has not been validated, but several factors point to the validity of this approach. First, we did require charges for audiometric testing to assure appropriate diagnostic work up. Second, compromised sensitivity or specificity of measurement would have biased this study toward the null hypothesis (no ototoxic effect) and thus against our findings. Third, increased vigilance in neomycin users should have introduced bias in the analysis of first and not only after repeated doses. On the same note, we apologize for the lack of clarity in our analytic design. While we used all fluoroquinolone users as comparator, we adjusted the analysis for the number of repeat prescriptions, resulting essentially in a comparison of 1 dose neomycin : 1 dose fluoroquinolone, 2 doses : 2 doses, and so forth. A sensitivity analysis where we restricted the analysis to repeat users showed near identical results but wider confidence intervals. An analysis of all neomycin users versus all fluoroquinolone users as the authors suggest would lack the ability to find a cumulative effect and thus add no value to our research question. Note that repeat prescriptions was a statistically significant determinant of hearing loss, supporting the suggested association (as well as the importance for multivariate adjustment, as done in our analysis).

Finally, the authors suggest a secular effect, such that newborn hearing screening might have reduced the incidence of sensorineural hearing loss post-tympanic membrane perforation in later study years, which in turn were more often attributed to fluoroquinolone users. As shown in Table 2 we did adjust for study year, which in fact was not associated with risk for hearing loss.

We conclude that the observed results, even though pointing to only a small increase in risk, along with solid biological plausibility and the availability of alternative treatment options support the existing labeling to avoid the use of neomycin in patients with NITM.

Possible Errors in Hearing Recovery Results

We read with great interest the article titled “Efficacy of 3 Different Steroid Treatments for Sudden Sensorineural Hearing Loss: A Prospective, Randomized Trial” by Lim et al. In this article, the authors demonstrated the clinical efficacy of steroid therapy on idiopathic sudden sensorineural hearing loss (ISSNHL) with different protocols in 60 patients. The treatment outcomes were similar among 3 groups: oral steroid for 10 days (group I), intratympanic dexamethasone injection (ITDI) 4 times (group II), and both (group III). Outcomes were measured by performing pure-tone audiometry before and after treatment, and hearing gains were then calculated in each group. The authors demonstrated that group III’s hearing gain was the highest (21.9 dB), although without statistical significance, followed by groups I and II (12.8 and 12.1 dB). However, on closer inspection, there were potentially incorrect data. According to the normative data provided in figure 3, comparing pure-tone average before and after treatment in each group, the hearing gain for group I should be 18.7 dB. Thus, the overall hearing gain for all 3 groups should be 17.5 dB. When comparing the hearing gains among 3 groups and overall hearing gain using the Kruskal-Wallis test in figure 4, the hearing gains for group I and total should be 18.7 dB and 17.5 dB, respectively. These potential errors might lead to different results as the hearing gains of group I and III become quite close. Therefore, we recommend that the authors take another look at the original data and correct any possible statistical errors in the hearing gain results that might have occurred.

Po-Hsien Sung, MD
Ka-Min Fang, MD
Department of Otolaryngology, Far Eastern Memorial Hospital, Taipei, Taiwan
Email: u701048@gmail.com

Disclosures

Competing interests: None.

Sponsorships: None.

Funding source: None.

Reference