Prelamination of Radial Forearm Free Flap with Buccal Mucosa
Grace G. Kim, Eric G. Halvorson, Anna X. Hang, William C. Pederson, Giorgio De Santis and Trevor G. Hackman
Otolaryngology -- Head and Neck Surgery 2013 148: 341 originally published online 21 December 2012
DOI: 10.1177/0194599812471632

The online version of this article can be found at:
http://oto.sagepub.com/content/148/2/341

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
AMERICAN ACADEMY OF
OTOLARYNGOLOGY--
HEAD AND NECK SURGERY

American Academy of Otolaryngology- Head and Neck Surgery

Additional services and information for Otolaryngology -- Head and Neck Surgery can be found at:

Email Alerts: http://oto.sagepub.com/cgi/alerts

Subscriptions: http://oto.sagepub.com/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav

>> Version of Record - Jan 23, 2013

OnlineFirst Version of Record - Jan 2, 2013

OnlineFirst Version of Record - Dec 21, 2012

What is This?
Prelamination of Radial Forearm Free Flap with Buccal Mucosa

Grace G. Kim, MD1, Eric G. Halvorson, MD2, Anna X. Hang, MD1, William C. Pederson, MD3, Giorgio De Santis, MD4, and Trevor G. Hackman, MD1

Sponsorships or competing interests that may be relevant to content are disclosed at the end of this article.

Keywords
buccal mucosa graft, oral reconstruction, prelamination, radial forearm free flap

Received September 21, 2012; revised November 14, 2012; accepted November 28, 2012.

Reconstruction of extirpative defects in the head and neck with vascularized free tissue transfer has become the standard of care. In order to overcome disadvantages of the traditional radial forearm free flap (RFFF), for example, color and texture difference, bulk, and donor site morbidity, the concept of prelamination of the RFFF with mucosa was developed.

The term prelamination, introduced in 1994, is a process in which tissue is implanted into a vascular flap prior to transfer.1 Prelamination with oral mucosa has been implemented in the reconstruction of a variety of intraoral and facial defects.2-4 With their high cell renewal rate, morcelized buccal mucosal grafts can spread over a vascularized fascial bed and become functional in 3 weeks.2 The resultant mucosa resembles the native oral mucosa both macroscopically and histologically,5 providing lubrication. Fasicomucosal flaps are thinner than fasciocutaneous flaps since no subcutaneous tissue is included. This allows for better tongue mobility and rehabilitation.2

We studied patients who underwent reconstruction with a prelaminated radial forearm fasciomucosal flap (RFFMF) to describe surgical technique and report multi-institutional outcomes.

Methods

Patients

Seventeen patients with oral defects reconstructed with prelaminated RFFMF were included in this retrospective Institutional Review Board–approved case series conducted from February 1997 to August 2012. This study was conducted at the University of North Carolina (Chapel Hill, North Carolina), the University of Texas Health Science Center (San Antonio, Texas), and the University of Modena and Reggio Emilia (Modena, Italy).

Technique

Surgery is performed in 2 stages: prelamination of the fascia antibrachialis and delayed flap transfer.

In the first stage, a full-thickness mucosal graft is harvested from the oral mucosa. The contralateral healthy cheek is used in cancer patients. The mucosal graft is morcelized (approximately 5 × 10 mm pieces). The donor site is closed primarily with absorbable suture. Under tourniquet control, a longitudinal skin incision is made over the radial artery. A prefascial dissection is performed. The morcelized mucosal grafts are evenly spaced and secured to the fascia antibrachialis with absorbable suture (Figure 1). A silicone sheet is placed to prevent adhesion. The harvested site is closed in layers and the wrist is splinted.

In our experience, it takes 2 to 3 weeks for the morcelized grafts to coalesce, and therefore, flap transfer is performed at this time. The forearm incision is opened, fluid (ie, salivary seroma) aspirated, and the silicone sheet removed. Next, the fasciomucosal flap is elevated similar to an RFFF. The donor site is closed primarily. The flap is inset and microanastomosis performed. Clinical assessment and Doppler signals are used to monitor flap viability.

1Department of Otolaryngology/Head and Neck Surgery, University of North Carolina Hospitals, Chapel Hill, North Carolina
2Department of General Surgery, Division of Plastic and Reconstructive Surgery, University of North Carolina Hospitals, Chapel Hill, North Carolina
3The Hand Center of San Antonio and The University of Texas Health Science Center, San Antonio, Texas
4Department of Plastic and Reconstructive Surgery, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy

This article was presented at the 2012 AAO-HNSF Annual Meeting & OTO EXPO; September 9-12, 2012; Washington, DC.

Corresponding Author:
Trevor G. Hackman, MD, Assistant Professor, Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, 170 Manning Drive, CB 7070, Physician’s Office Building, Room G-108 Chapel Hill, NC 27599-7070
Email: trevor_hackman@med.unc.edu

Downloaded from oto.sagepub.com at SOCIEDADE BRASILEIRA DE CIRUR on February 8, 2013
Results

Reconstruction using the prelaminated RFFMF with buccal mucosa was performed in 17 patients (10 males; mean age 50 years; range, 19-60 years). Diagnoses included cancer (n = 13), fistula (n = 2), trauma (n = 1), and arteriovenous malformation (n = 1). Defect location included the lip (n = 1), floor of mouth (n = 10), tonsil (n = 1), and soft palate (n = 5) (Table 1).

One patient developed partial necrosis of the volar skin after flap prelamination, but this did not jeopardize graft take. Delay to second surgery ranged from 2 to 5 weeks (Table 1). There were no postoperative hematomas or infections. One patient experienced venous congestion that spontaneously resolved (Table 1, Patient 7). Flap survival was 100%. No patients complained of decreased grip strength, sensation, or wrist movements.

Reconstruction was found to be satisfactory at a range of 2 to 60 months postoperative in the majority of patients (88.2%) (Table 1; Figures 2, 3). Two patients had a postoperative complication that was surgically correctable. One

Table 1. Patient Demographics

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age (years)</th>
<th>Gender</th>
<th>Location of Defect</th>
<th>Etiology</th>
<th>Delay (weeks)</th>
<th>Follow-up (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53</td>
<td>M</td>
<td>L tonsil</td>
<td>Cancer</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>49</td>
<td>M</td>
<td>Soft palate</td>
<td>Fistula</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>46</td>
<td>M</td>
<td>Lip</td>
<td>AVM resection</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
<td>M</td>
<td>Soft palate</td>
<td>Trauma</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>38</td>
<td>F</td>
<td>Soft palate</td>
<td>Cancer</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>F</td>
<td>Soft palate</td>
<td>Cancer</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>F</td>
<td>Soft palate</td>
<td>Fistula</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>9</td>
<td>52</td>
<td>F</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>58</td>
<td>F</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>49</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>48</td>
<td>F</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>13</td>
<td>61</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>14</td>
<td>59</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>53</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>57</td>
<td>M</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>59</td>
<td>F</td>
<td>FOM</td>
<td>Cancer</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Abbreviations: AVM, arteriovenous malformation; FOM, floor of mouth.
The prelaminated RFFMF is particularly attractive for oral defects due to its thinness, preservation of the physiology of the oral mucosa, and minimized donor site morbidity. In one study, patients who underwent a prelaminated RFFMF with primary closure of the donor site had lower incidence of decreased grip strength, sensation, and wrist extension when compared to a fasciocutaneous flap with skin grafting.4

There are several technical considerations when utilizing the prelaminated RFFMF. Placement of a silicone sheet over the mucosal grafts is important to prevent adhesions and permit graft spread. All patients developed a salivary seroma following prelamination due to the preserved function of the buccal mucosa and were confirmed to contain amylase. Due to rapid growth of the oral mucosa, 3 weeks allows the graft to increase up to twice the size.4 In one patient (Table 1, Patient 2), flap transfer occurred in 2 weeks and the mucosal graft had not coalesced. The optimal time for flap transfer, based on our clinical observation, is 3 weeks following prelamination; however, this will depend on the initial ratio of graft-to-fascia surface area. Postoperative contracture of the prelaminated flap can occur if the mucosal graft does not adequately grow prior to free tissue transfer, which can lead to scar contracture and interfere with postoperative oral function.4 We do not consider reconstruction with prelamination RFFMF for patients with aggressive and/or advanced cancers to avoid potential for delay in care. The effect of postoperative radiation on patients with prelaminated RFFMF is unknown and further longitudinal studies may be warranted.

Conclusions
Our multi-institutional case series demonstrates favorable outcomes and minimal donor site morbidity using the prelaminated RFFMF with morcelized buccal mucosa for intraoral lining defects.

Author Contributions
Grace G. Kim, acquisition of data, analysis and interpretation of data, drafting manuscript; Eric G. Halvorson, substantial contribution to study concept and design, analysis and interpretation of data, critical revision of manuscript, final approval of version to be published; Anna X. Hang, acquisition of data, analysis and interpretation of data; William C. Pederson, substantial contribution to study concept and design, critical revision of manuscript; Giorgio De Santis, substantial contribution to study concept and design, critical revision of manuscript; Trevor G. Hackman, substantial contribution to study concept and design, analysis and interpretation of data, critical revision of manuscript, final approval of version to be published.

Disclosures
Competing interests: William C. Pederson, Medtronics, consultant.
Sponsorships: Resident T32 training grant, no impact on study design, conduct, collection, analysis or data interpretation or manuscript generation.
Funding source: None.

References